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Jordanian twists on deformed carrier subspaces
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‡ Theoretical Department, St Petersburg State University, St Petersburg 198904, Russia
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Abstract. The nontrivial subspaces with primitive coproducts are found in the deformed universal
enveloping algebras. They can form carrier subspaces for additional Jordanian twists. The latter
can be used to construct sequences of twists for algebras whose root systems contain long series
of roots. The corresponding twist for the so(5) algebra is given explicitly.

1. Introduction

The triangular Hopf algebras A(m,�, S, η, ε; R) with the R-matrix satisfying the unitarity
condition R21R = 1 form a subclass of quasitriangular Hopf algebras [1]. Many of them can
be considered as quantizations of triangular Lie bialgebras L with antisymmetric classical r-
matrices r = −r21 satisfying the classical Yang–Baxter equation. The quantization is defined
by a twisting element F = ∑

f(1) ⊗ f(2) ∈ A ⊗ A with an expansion F = 1 + 1
2hr + · · · [2].

The terms of this decomposition were defined in [2] using the BCH series related to the
central extension of the r-matrix carrier Lie algebra L. In applications the knowledge of the
twisting element is highly desirable, giving the (twisted) R-matrix RF = F21RF−1 and twisted
coproduct �F = F�F−1. The explicit expressions of the twist elements F were found [3,4],
for the carrier algebras L with the special properties of their triangular decompositions. The
constructions (chains of extended Jordanian twists) proposed there for the higher-dimensional
carriers L were based on the effect of primitivization of the carrier subalgebras L′ ⊂ L for
certain twists (the full canonically extended twists) performed in L. In this letter we present
the other possibility of composing the Jordanian and extended Jordanian twists. We show that
under certain conditions when all the coproducts in L are nontrivially twisted there exists in
U(L) the deformed primitive carrier subspace L′

F . Thus the twist F can be composed with the
next one F ′ defined on L′

F . This effect greatly enlarges the possible applications of extended
twists and chains. In a special form the established sequences of twists can be applied to
deform the universal enveloping algebras for the classical series BN and CN . An interesting
question of connections of constructed twists with recently found quasi-Hopf twistings [5, 6]
will be discussed in further publications.

We hope that the constructed twisting elements for the orthogonal Lie algebras will
describe the important deformations for the now actively studied anti-de-Sitter field theories
(cf, e.g., [7]) and the quantization of coboundary bialgebra structures of conformal algebras,
described by triangular classical r-matrices (cf, e.g., [8]).
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2. Extended twists and the primitivity of deformed carrier subspaces

Let g be a Lie algebra with the root system �g , generators Lλ, λ ∈ �g , Cartan generators
Hα, α ∈ S�g

and the universal enveloping algebra U(g). Consider the class B of two-
dimensional Borel subalgebras in U(g) associated with a fixed Cartan generator H and

EB = E + ξBiB
i

where E ≡ Lλ0 has the canonically normalized root λ0 dual to H , [H,E] = E and {Bi, B
j }

is the set of eigenvectors for H with the property

[H,Bi] = βiBi

[H,Bj ] = βjBj βi + βi = 1.
(1)

This guarantees that [H,EB] = EB.
Let us consider the conditions sufficient for the primitivity of the generators in B. For the

generator EB the situation obviously depends on the value of ξ :

(I) ξ = 0, in particular this is the case of the undeformed U(g) where the subalgebras B are
primitive;

(II) ξ �= 0, this case can be realized only in the deformed U(g).

The primitivity of H depends on the injection of the carrier subalgebras L
(4)
i of the

preceding extended Jordanian twists (see [3]) into the carrier algebra of the final composition
of twists. Consider the Borel subalgebra B(2) ⊂ L(4) generated by one of the generators Lλ⊥

0

with the property [Hλ⊥
0
, Lλ⊥

0
] = Lλ⊥

0
. Let �J⊥ be the Jordanian twist based on this B(2), i.e.

�J⊥ = exp{Hλ⊥
0

⊗ σ⊥
0 } σ⊥

0 = ln(1 + Lλ⊥
0
). (2)

From now on we shall use the notation and the normalization of the structure constants
introduced in [4]. Let π⊥ be the set of the constituent roots for λ⊥

0 :

π⊥ = {λ′, λ′′|λ′ + λ′′ = λ⊥
0 ; λ′ + λ⊥

0 , λ
′′ + λ⊥

0 /∈ �g}. (3)

For any λ′ ∈ π⊥ there must be such an element λ′′ ∈ π⊥ that λ′ +λ′′ = λ⊥
0 . So, π⊥ is naturally

decomposed as

π⊥ = π ′
⊥ ∪ π ′′

⊥ π ′
⊥ = {λ′} π ′′

⊥ = {λ′′}. (4)

Consider now the sequence of extensions �E⊥ for the Jordanian twist �J⊥ :

�E⊥ =
∏
λ′∈π ′

⊥

�Eλ′ =
∏
λ′∈π ′

⊥

exp{Lλ′ ⊗ Lλ⊥
0 −λ′e− 1

2 σ
⊥
0 }. (5)

The complete sequence of extended twists looks like

FB⊥ = �E⊥�J⊥ . (6)

In this situation the primitivity of H is guaranteed by the fact that H ∗ is orthogonal to
the only root composed by the elements of π⊥. Let us pass to the twisted coproduct for the
generator EB:

�FB⊥ (EB) = �FB⊥ (E) + ξ�FB⊥ (Bi)�FB⊥ (B
i) = ��E⊥ (E) + ξ�FB⊥ (Bi)�FB⊥ (B

i) (7)

��E⊥ (E) = �E⊥(E ⊗ 1 + 1 ⊗ E)(�E⊥)
−1. (8)

We have the following possibilities.

(a) λ′ + λ0, λ
⊥
0 − λ′ + λ0 are not in �g . In this case E remains primitive and this is just case I.

(b) λ′ + λ0, λ
⊥
0 − λ′ + λ0 are in �g but not all of them are in π⊥. In this situation the carrier

subalgebra is to be enlarged. For instance these roots may be in the other links of the
chain of twists. We shall consider this important possibility elsewhere.
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(c) λ′ + λ0, λ
⊥
0 − λ′ + λ0 are in π⊥. Let us concentrate our attention on this case.

When the tensor C = ∑
λ′(Lλ′ ⊗ Lλ⊥

0 −λ′e− 1
2 σ

⊥
0 ) is an invariant of the generic B(2)

subalgebra (with [H,E] = E),

[C,�prim(H)] = [C,�prim(E)] = 0

we have the Matreshka effect [4] and are again in situation I.
Let us pass to the case of a noninvariant C. Moreover, we shall suppose that the subspaces

π ′
⊥ andπ ′′

⊥ are not conserved by the shift with the rootλ0 and impose three additional conditions:
(i) λ′ + λ0 ∈ π ′′

⊥; (ii) λ′ + λ⊥
0 and λ′′ + λ⊥

0 are not in �g; and (iii) all the λ0-series of the roots
are short. The minimal subset involved in this action contains two roots in π ′

⊥: λ′ and

λ̃′ = −λ′ − λ0 + λ⊥
0 . (9)

This means that it is sufficient to regard the factors {Bi, B
j } as depending on the list of

generators:

Lλ′ Lλ⊥
0 −λ′ Lλ̃′ Lλ⊥

0 −λ̃′ Lλ⊥
0

and Lλ0 . (10)

The twisted coproducts �FB⊥ for the first five of them are known (see [4]). In particular, σ⊥
0

is primitive and

�FB⊥ (Lλ′;λ̃′) = Lλ′;λ̃′ ⊗ e− 1
2 σ

⊥
0 + 1 ⊗ Lλ′;λ̃′

�FB⊥ (Lλ⊥
0 −λ′;λ⊥

0 −λ̃′) = Lλ⊥
0 −λ′;λ⊥

0 −λ̃′ ⊗ e+ 1
2 σ

⊥
0 + eσ

⊥
0 ⊗ Lλ⊥

0 −λ′;λ⊥
0 −λ̃′ .

(11)

Returning to expression (8) we obtain the last coproduct

�FB⊥ (E) =
∏
λ′,λ̃′

exp{Lλ′ ⊗ Lλ⊥
0 −λ′e− 1

2 σ
⊥
0 }(E ⊗ 1 + 1 ⊗ E) exp{−Lλ′ ⊗ Lλ⊥

0 −λ′e− 1
2 σ

⊥
0 }

= E ⊗ 1 + 1 ⊗ E + C
λ⊥

0 −λ̃′
λ′λ0

Lλ⊥
0 −λ̃′ ⊗ Lλ⊥

0 −λ′e− 1
2 σ

⊥
0

+C
λ⊥

0 −λ̃′
λ′λ0

Lλ⊥
0

⊗ Lλ⊥
0 −λ̃′Lλ⊥

0 −λ′e−σ⊥
0 + C

λ⊥
0 −λ′

λ̃′λ0
Lλ⊥

0 −λ′ ⊗ Lλ⊥
0 −λ̃′e− 1

2 σ
⊥
0 . (12)

We are still free in the normalization of E; we fix it so that C
λ⊥

0 −λ̃′
λ′λ0

= −1. Notice that the
condition λ′ + λ0 = λ⊥

0 − λ̃′ means also that we obtain a closed subalgebra. According to the
normalization of the L(4) structure constants mentioned above this gives the following value
for the last remaining constant:

C
λ⊥

0 −λ̃′
λ′λ0

C
λ⊥

0

λ⊥
0 −λ̃′λ̃′ +

∑
ν

Cν

λ̃′λ′C
λ⊥

0
νλ0

+ C
λ⊥

0 −λ′

λ0λ̃′ C
λ⊥

0

λ⊥
0 −λ′λ′ = 0

}
⇒ C

λ⊥
0 −λ′

λ̃′λ0
= −1.

The final expression for the coproduct �FB⊥ (E) is

�FB⊥ (E) = E ⊗ 1 + 1 ⊗ (E + Lλ⊥
0 −λ̃′Lλ⊥

0 −λ′e−σ⊥
0 )

−(Lλ⊥
0 −λ̃′ ⊗ Lλ⊥

0 −λ′+Lλ⊥
0 −λ′ ⊗ Lλ⊥

0 −λ̃′)(1 ⊗ e− 1
2 σ

⊥
0 )−eσ

⊥
0 ⊗ Lλ⊥

0 −λ̃′Lλ⊥
0 −λ′e−σ⊥

0 .

Thus for the factors {Bi, B
j } we have the following (coalgebraic) equation:

1 ⊗ (Lλ⊥
0 −λ̃′Lλ⊥

0 −λ′e−σ⊥
0 ) − (Lλ⊥

0 −λ̃′ ⊗ Lλ⊥
0 −λ′ + Lλ⊥

0 −λ′ ⊗ Lλ⊥
0 −λ̃′)(1 ⊗ e− 1

2 σ
⊥
0 )

−eσ
⊥
0 ⊗ Lλ⊥

0 −λ̃′Lλ⊥
0 −λ′e−σ⊥

0 + ξ�FB⊥ (Bi)�FB⊥ (B
i)

= (ξBiB
i) ⊗ 1 + 1 ⊗ (ξBiB

i). (13)

This demonstrates that the list of realizations for B in (10) might be reduced to the set

Lλ⊥
0 −λ̃′ Lλ⊥

0 −λ′ and Lλ⊥
0
.
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This immediately leads to the solution of the equations (11) and (13) that gives the following
answer:

EB = E + Lλ⊥
0 −λ̃′Lλ⊥

0 −λ′e−σ⊥
0 ξ = 1. (14)

We have proved that in the twisted universal enveloping algebra UFB⊥ one can find the
deformed primitive Borel subspace. In case I this was one of the basic effects in constructing
chains of extended twists [4]. In case II this also provides the possibility to compose new
twists such as

FBJ E = �BJ�E⊥�J⊥ (15)

where the second Jordanian factor is defined on the deformed carrier subspace generated by
{H,EB},

�BJ = exp(H ⊗ σ(EB))

σ (EB) = ln(1 + EB).
(16)

The carrier algebra for the twists FBJ E is eight dimensional with the generators

{H,Hλ⊥
0
, Lλ0 , Lλ⊥

0
, Lλ′ , Lλ⊥

0 −λ′ , Lλ̃′ , Lλ⊥
0 −λ̃′ } (17)

and the set of roots

λ0 λ⊥
0 λ′ λ⊥

0 − λ′ λ̃′ λ⊥
0 − λ̃′. (18)

It is necessary to distinguish the following special case of the general structure considered
above. This is the case when in the root condition (9) the roots λ′ and λ̃′ coincide:

λ′ + λ0 = λ⊥
0 −λ′. (19)

The root subset now contains four roots:

λ⊥
0 λ0 λ′ λ⊥

0 − λ′ (20)

and we have a long λ′-series of the root λ⊥
0 :

λ⊥
0 λ⊥

0 − λ′ λ⊥
0 − 2λ′ ∈ �g. (21)

This is obviously the property characteristic for the series BN and CN of simple Lie algebras
and the exceptional algebra F4. In such deformations the twisting elements are still of the
form (15) and (16) while the expression (14) for EB is to be substituted by

EBO = E + 1
2 (Lλ⊥

0 −λ′)2e−σ⊥
0 .

3. Examples

Identifying the roots (18) or (20) of the carrier subalgebras with the root subsets in simple Lie
algebras we can perform new twisting deformations for them specific for the properties of their
root systems.

In the case of the eight-dimensional algebra L the minimal simple algebra where the
effect described above can be illustrated is the Lie algebra U(sl(4)). The elements (17) can
be identified with the following generators of sl(4):

H = H23 Hλ⊥
0

= H14 Lλ0 = E23 Lλ⊥
0

= E14

Lλ′ = E12 Lλ⊥
0 −λ′ = E24 Lλ̃′ = −E34 Lλ⊥

0 −λ̃′ = E13.

After the first (minimal) extended twist [3]

�E�J⊥ = e(E12⊗E24e− 1
2 σ14 )e(H14⊗σ14) σ14 = ln(1 + E14)
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the second extension factor can have the form

�E ′ = exp(−E34 ⊗ E13e− 1
2 σ14).

According to formula (14) after the sequence of extended twists �E ′�E�J⊥ the deformed
carrier subspace of primitive elements forms the Borel subalgebra B = {H23, EB}EB ≡
−E23 + E13E24e−σ14 . So it is possible to use σB = ln(1 + EB) and apply additionally the
twist (see (16)) �BJ = exp(H23 ⊗ σB) to the deformed algebra UE ′EJ (sl(4)). In this case the
final twisting element looks like

FBJ E ′EJ = �BJ�E ′�E�J⊥ . (22)

We shall consider such cases in full detail in the forthcoming publications.
The minimal simple Lie algebra that has the root subset (20) is so(5). When the root

system of so(2N + 1) is fixed in the standard e-basis as

�so(2N+1) = {±ei,±ei ± ej |i, j = 1, . . . , N}
then in accordance with the property (19) the set (20) can be injected into �so(5) as follows:

λ⊥
0 = e1 + e2 λ0 = e1 − e2 λ′ = e2 λ⊥

0 − λ′ = e1.

Thus we obtain the six-dimensional subalgebra L(6) ⊂ so(5) generated by the set

{H1+2, E1+2, H1−2, E1−2, E1, E2}.
In terms of the ordinary antisymmetric Okubo matrices Mij the following list of generators in
the defining representation d(L(6)):

d(Hλ⊥
0
) = d(H1+2) = − i

2
(M12 + M34)

d(H) = d(H1−2) = − i

2
(M12 − M34)

d(Lλ⊥
0
) = d(E1+2) = 1

2 (−M24 + iM23 + iM14 + M13)

d(Lλ0) = d(E1−2) = 1
2 (−M24 − iM23 + iM14 − M13)

d(Lλ⊥
0 −λ′) = d(E1) = 1√

2
(M25 − iM15)

d(Lλ′) = d(−E2) = 1√
2
(−M45 + iM35)

fits the normalization conditions for L(6).
The canonical extended twist FEJ based on L(4) with the generators {H1+2, E1+2,

E1,−E2},
FEJ = exp(−E2 ⊗ E1e− 1

2 σ1+2) exp(H1+2 ⊗ σ1+2) σ1+2 = ln(1 + E1+2)

leads to the deformed algebra UEJ (L(6)) with the coproducts

�EJ (H1+2) = H1+2 ⊗ e−σ1+2 + 1 ⊗ H1+2 + E2 ⊗ E1e− 3
2 σ1+2

�EJ (E1+2) = E1+2 ⊗ eσ1+2 + 1 ⊗ E1+2

�EJ (E2) = E2 ⊗ e− 1
2 σ1+2 + 1 ⊗ E2

�EJ (E1) = E1 ⊗ e
1
2 σ1+2 + eσ1+2 ⊗ E1

�EJ (H1−2) = H1−2 ⊗ 1 + 1 ⊗ H1−2

�EJ (E1−2) = E1−2 ⊗ 1 + 1 ⊗ E1−2 − E1 ⊗ E1e− 1
2 σ1+2 − 1

2E1+2 ⊗ E2
1e−σ1+2 .
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According to the arguments presented in section 2 we have in UEJ (L(6)) the primitive
subalgebra B = {H1−2, EBO} on the deformed subspace with

EBO = E1−2 + 1
2E

2
1e−σ1+2 .

In this case the ‘shifted’ Jordanian factor (see (16))

�BJ = exp(H ⊗ σBO) = exp(H1−2 ⊗ σBO)

σBO = ln(1 + EBO)

can be applied toUEJ (L(6)) (and/or toUEJ (so(5))). The result will be the twistedUBJ EJ (L(6))

(correspondingly UBJ EJ (so(5))) with the costructure defined by the relations

�BJ EJ (H1+2) = H1+2 ⊗ e−σ1+2 + 1 ⊗ H1+2 + E2 ⊗ E1e− 3
2 σ1+2− 1

2 σBO − 1
2H1−2 ⊗ E2

1e−2σ1+2−σBO

�BJ EJ (H1−2) = H1−2 ⊗ e−σBO + 1 ⊗ H1−2

�BJ EJ (E1+2) = E1+2 ⊗ eσ1+2 + 1 ⊗ E1+2

�BJ EJ (E2) = E2 ⊗ e− 1
2 σ1+2− 1

2 σBO + 1 ⊗ E2 − H1−2 ⊗ E1e−σ1+2−σBO

�BJ EJ (E1) = E1 ⊗ e
1
2 σ1+2+ 1

2 σBO + eσ1+2 ⊗ E1

�BJ EJ (E1−2) = E1−2 ⊗ eσBO + 1 ⊗ E1−2 − E1 ⊗ E1e− 1
2 σ1+2+ 1

2 σBO − 1
2E1+2 ⊗ E2

1e−σ1+2

�BJ EJ (EBO) = EBO ⊗ eσBO + 1 ⊗ EBO.

The twisted coproducts for the other four generators of UBJ EJ (so(5)) can be expressed
as finite sums of the so(5) generators and the exponentials of σ1+2 and σBO. Using a particular
set of generators nonlinearly related to the undeformed ones, it can be demonstrated that the
bialgebra structure of UBJ EJ (so(5)) coincides with the one presented in [9], where it was
obtained as a direct solution of the conditions of coassociativity while the twisted character of
the deformation was not studied.

The Jordanian twists on the deformed carrier spaces found above will give rise to
different new constructions, enlarging the list of explicit solutions of the Yang–Baxter equation,
deformed Yangians and integrable models. In particular, due to the embedding of the simple
Lie algebras g into the corresponding Yangians (as Hopf subalgebras) U(g) ⊂ Y(g) [1]
the Yangian R-matrix can be twisted by the same F as defined for g. As a result for the
case of orthogonal algebra g = so(M) the R-matrix of Y(g) (in the defining representation
ρ ⊂ Mat(M,C) ⊗ Mat(M,C)) can be changed:

uρ(1 ⊗ 1) + P − u

u − 1 + M/2
K −→ uρ(F21F−1) + P − u

u − 1 + M/2
ρ(F21)Kρ(F−1).

(Here u is a spectral parameter and the operator K that is obtained from P by transposing its
first tensor factor.) Henceforth the density of the integrable spin chain Hamiltonian is changing
as well: Pρ(F21F−1) + 1

1−M/2ρ(F)Kρ(F−1) (cf the sl(2)-case [10]).

This work has been partially supported by the Russian Foundation for Basic Research under
grants 00-01-00500 (VDL), 99-01-00101 and INTAS-99-01459 (PPK).
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